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It is the purpose of this paper to present formulas and tables

for the computation of the linear resistances, conductances and

capacities between parallel cylindrical conductors, or between a

cylindrical conductor and a parallel indefinitely extending conducting

plane. As is shown in the appended bibliography, the problem is

by no means new ; but the mathematical mode of presentation, and

the arithmetical tabulation, here offered, are believed to be new.

It is hoped that these will be useful to students of electrical engi-

neering. Antihyperbolic functions are the natural vehicles of ex-

pression adapted to this problem.

Infinite Conducting Plane and Parallel Cylinder.

Linear Resistance. —Let a uniform conducting cylinder of radius

D

Z O Z,

Fig. I. Section of a conducting cylinder DEF parallel to the indefinitely

extending conducting plane Z'OZ.

a cm., shown in section at DEF in Fig. i, be situated at an axial

distance d cm. from a parallel indefinitely extending conducting

142
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plane Z'OZ. Let the space above the plane unoccupied by the

cylinder be filled by an indefinitely extending medium of uniform

resistivity p absohm-cm. Then the linear resistance between the

plane and the cylinder, i. e., the resistance of the medium between

them, as comprised between a pair of infinite parallel planes per-

pendicular to the cylinder and i cm. apart, will be

r = —cosh"
P 217 0 absohm-cms. or C.G.S. magnetic

units of resistance in a linear cm. (0

If the conducting surface EDF of the cylinder were unrolled

into a flat conducting ribbon 27ro- cm. in breadth, and the ribbon

were supported parallel to the plane Z'OZ at a uniform distance

L^=(j coslr^ (c?/o-) cm. above it, as indicated in Fig. 2, with ver-

tical insulating side walls, Ez' and Fs, to limit the flow of current

through the medium to the parallel distribution shown ; then the

rectangular slab of medium EFzz' of Fig. 2, would be the equi-

valent in electric resistance to the indefinitely extending plane and

cylinder system of Fig. i.

In Fig. 2 the depth, or distance across the slab, following

the lines of current flow, is L = (t coshr'^ {d / cr) cm., and the

I

D
2Tra-- 4

Fig. 2. Equivalent slab section corresponding to infinite plane and parallel

cylinder of Fig. i.

surface area of each face of the slab, per linear cm. of its length,

is 5^ = 27ro- cm. -/cm. so that the linear resistance of the whole is

^\ = ~F Pp ^ r

(T cosh ' {d\(T) p
i

^-^ —- = - - cosh"
277(7 27r to absohm-cm. (2)

Since the linear resistance of the plane cylinder system of Fig. i,

or of the slab in Fig. 2, does not depend upon its absolute dimen-

sions, the scale of linear dimensions in the diagram may be chosen
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such that cr=:i unit, in which case the depth of the slab is

cosh~^c? units and the breadth of the slab is 27r units.

The quantity Y defined by the relation

Y= cosh-^{d/a) numeric (3)

may be called the distance factor of the plane-cylinder system

;

because the distance between electrodes in the equivalent slab of

Fig. 2 is

L^=Y(T cm.

When the radius a- of the cylinder is very small with respect

to the distance d; so that d/a is a large number, we have

2dF= log^

—

numeric (4)

so that for such cylinders the linear resistance

p p 2d
r =

—

Y= —log

—

absohm-cm. fs)
p 27r 27r ^' a ^•'^

The accompanying table gives for successive values of d/a in

column I., the corresponding value of Y in column II. Column III.

gives the resistance factor Y/2i? which, when multiplied by the

resistivity p of the medium, gives the linear resistance of the plane-

cylinder system considered.

Thus, if a conducting cylinder with a radius of 2 cm. is sup-

ported at an axial distance of 10 cm. from an infinite conducting

plane, in a medium of resistivity /d = 3Xio^° absohm-cms., we

have fl?/CT=5. The table gives for this ratio the value of Y as

2.2924, and the value of the resistance factor y/27r = 0.3649; so

that the linear resistance of the system will be 3 X 10^" X 0-3649

= 1.0947 X io^° absohm-cms. ; or 10.947 ohms in a linear cm.

Linear Conductance. —The linear conductance, or conductance

per linear cm. of the plane-cylinder system will be by (i)

s: = -.
—

, , , , , = -7, = 7 • ^ry abmhos per cm. (6)^p p cosh-^ (d/a-) pY ' Y ^ ^ ^

where y is the uniform conductivity of the medium in abmhos per
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cm. The quantity 2it/Y may be called the conductance-factor of

the plane-cylinder system. It appears in column V. of the table.

Thus, if a conducting cylinder of radius a = 0.5 cm. be sup-

ported at an axial distance of d = 7.S cm. from an infinite con-

ducting plane, in a medium of conductivity y=io"^° abmhos per

cm., the ratio d/a in column L is 15, and the conductance factor

for this ratio appears in column V. as 1.848. The linear conduct-

ance of the system is thus 1.848 X iO"^° abmhos per cm. The

distance-factor of the system is given in column II. as 3.4001 ; so

that the depth of the equivalent rectangular slab of medium is

1.700 cm., the breadth being 3.142 cm.

Linear Electrostatic Capacity. —The linear capacity Cp of a

plane-cylinder system in a dielectric medium of specific inductive

capacity k, is numerically the same as the linear conductance of the

same system in a medium of conductivity k/Att or resistivity ^tt/k
;

so that, in C.G.S. electrostatic units

:

K I

<r„ = -.
—

, , ,. = K —,- statfarads per cm. (7)^ 2 cosh-^ {^1^) 2 V ^ ^' ^

The values of the capacity factor i/(2F) appear in column VI. of

the table for each selected value of d/a.

Thus, a cylinder of radius o- = o.4 cm. is supported at an axial

distance of i cm. from an infinite conducting plane in a medium of

K^i. Here c?/o- = 2. 5, and i/(2F)= 0.3 192. The linear capacity

of the system is therefore 0.3192 statfarad per cm.

In order to convert the linear capacity Cp statfarads per cm. into

microfarads per km., expressed by Cp', we have:

9 9
r ' = -^ = - • ,; microfarads per km. (8)

Q Q 2Y ^ ^ ^

Similarly, to express the linear capacity in microfarads per mile

/*
/c I= X —vr microfarads per mile (9)

" 5-591 5-591 2F

That is, we must divide the capacity-factor of the table by 9 to obtain

microfarads per km. or by 5.591 to obtain microfarads per mile.

PROG. AMER. PHIL. SOC. , XLVHI. I92 K, PRINTED SEPTEMBER2, I909.
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Potential Distribution.

On the Median Line Beneath the Cylinder. —It is well known

that the flow of electric current, and the distribution of potential,

between the conducting cylinder and the plane, are such as might be

produced by removing the conducting cylinder and substituting a

conducting polar line at A, parallel to the plane. The point A lies

on the line OC, and at a distance a from the plane defined by the

relation

a^=(T sinh Y =\/d- —o--. cm. ( 10)

The values of the polar ratio a/a- are given in the table in column

VII. for each of the selected ratios d/a- up to J/(r^^50, beyond

which the difference between a/a- and d/a- is less than i part in

5,000. For most practical purposes, it is, therefore, sufficient to

regard, the polar line as coinciding with the cylinder axis when the

distance of that axis from the plane exceeds 50 radii.

In the steady state of flow, the potential at any point _Vi on the

line OA (Fig. 3) distant 3'^ cm. from 0, will be

?/j = /^tanh-i( -^
j

- abvolts (11)

where / is the current strength per linear cm. of the system in

absamperes, the potential of the plane Z'OZ being taken as numer-

ically zero.

Similarly, the potential at any other point 3^ on the median line

OY, below A, distant 3^ cm. from 0, will be:

//, = / tanh-^ (
' ^

)
abvolts (12)

Consequently, if the potential of the surface of the cylinder be u^,

and y^ be the distance of the lowest point of the cylinder from the

plane, the potential of any other point on the line OA between the

cylinder and the plane, distant 3-0 cm. from the latter, will be

:

tanh-* (Jz/^) u 1^ / X«9= ?^ I

—

, 1 ) , ;
abvolts (13)

2 I tanh-' (ji/«)
^ ^

Potentials on the Median Line Above the Cylinder. —In the

steady state of flow, the potential at any point 3*3 on the median line

OY, and distant 3', cm. from O, above the polar point A, is:
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P
h = ^. coth-M ^j abvolts (14)

u

where / and tt have the same meanings as above, and the potential

of the plane Z'OZ is reckoned as zero.

Similarly, the potential at any other point 3;^ on the median line

OY, distant y^ cm. from O, and above the polar point A, is:

^ = —coth- \-\ abvolts (15)

Consequently, if the potential of the surface of the cylinder be

W3, and 3/3 be the distance of the highest point of the cylinder from

the plane, the potential at any other point on the median line, above

the cylinder, and distant 3'^ cm. from the plane, will be

:

coth~^ iyjci)
^^^ = ^^ —Ti

—

VT T-\ abvolts (16)
^ 3 coth-^ {y^la) ^ '

Potentials at Points Outside the Cylinder and off the Median

Line. —If the point in the plane Z'YZ at which the potential is

required, lies ofif the median line OY, the potential may be expressed

either

:

(0) In terms of rectangular coordinates z and 3' of the point.

{b) In terms of the ratio of radii vectores to the point, from the

polar point A, and from its image.

(a) Potential in Terms of Rectangular Coordinates. —Let P,

Fig. 3, be the point whose potential is required, and whose rectan-

gular coordinates are y and z, measured respectively along the me-

dian line OY, and the line OZ in the infinite conducting plane.

Then u, the potential of F, is

:

IP
u = —

27r

(2ay \
-s——2——s I

abvolts (17)
« +y + .^ /

where /, p and a have the values previously assigned", and the poten-

tial of the plane Z'OZ is reckoned as zero. Eliminating Ip/i: with

the aid of (11), we have:

tanh-'

u = u. 7—r—pT

—

1-^ abvolts (18)
^ 2 tanh-^ O'l/^)
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Ml is the potential of the conducting cyhnder, upon the lowest point

of which y =
yi, and Z:=o. Thus, taking the point P in Fig. 3,

defined by the coordinates 3^=1 and z = 2, and referring the

Fig. 3. Coordinates of a point at which the potential is required.

potential u of P to u^, the potential of the surface of the cylinder,

where y\ = 2, 2: = o, we have a = 3.4642 and

_ tanh-'(6.9284/i7)
'' - ''^2 tanh-X2/3.4642)-

°-^^^5^''-

Formula (18) may also be presented in the form:

tanh-'f 2 ,^T; 2 ^

tanh" -1 ( ^''^^ \
abvolts (19)

{b) Potential in Terms of Radii Vectores. —A line parallel to

the axis of the conducting cylinder, drawn through the point B,

Fig. 3, on the median line OYand with the distance OB= OA, may
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be called the image of the polar line through OA. The point B,

thus defined, may be called the image polar point. The points A
and B, taken together, may be called the polar points of the diagram

with respect to the infinite plane and cylinder.

Let P be any point in the plane of the diagram (Fig. 3). Then

let r' and r be the lengths of a pair of radii vectores BP, AP, drawn

from the polar points B, A, to P respectively. Let these distances

r'r be called the polar distances of the point P. Then the ratio m
of these polar distances will be

:

m= r'/r numeric (20)

This ratio may be called the polar ratio, for purposes of reference.

The polar ratio will manifestly be a number greater than unity for

all points in the diagram above the infinite conducting plane Z'OZ.

It is a well known result that

Ip
u = - log^ m abvolts (2

1

)

If a point be selected on the surface of the cylinder, having a poten-

tial Ml abvolts, and for convenience the lowest point of coordinates

^1 and r = o, the polar distances of this point may be denoted by

r^' and r^ ; while their ratio may be denoted by w^ = r-l/'^x- Con-

sequently

u^ = —log^ m^ abvolts (22)

and eliminating /, p and 2.tt between (21) (22), we have

11 = u.
log^ in loglog m iog,„;//

1
—--- = ti, p^'^^— abvolts (23)

The potential of the infinite plane is here reckoned as zero. It may
be observed that

r^' a -\- d —<T a -\- d
in = —= = numeric ('24.)

When the cylinder radius is very small, compared with the axial

distance d, d=a, and
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r ' 2d D
VI. = - == —= — numeric (25)

^ r^ a (T ^ '

It follows from the preceding equations that the equipotential

surfaces in an infinite plane-cyHnder system are all cylinders having

their axes situated on the median line. If u-^ be the potential of the

conducting cylinder, and if we denote by F^ the value of the distance

factor Y for this cylinder, according to formula (3), or to column

II. of the table, then the distance factor Y of any cylindrical equi-

potential surface whose potential is u becomes

71

F= Fj— numeric (26)

Wehave for any such cylinder the equations of condition

:

F=cosh-Hc?A) =sinh-i(a/cr) =tanh-i(a/d) =cotli-i((//a)

= 2 tanh"^(3;/a) numeric (27)

whence d, the axial distance, or y coordinate, of the cylinder whose

potential is u, will be along the median line OY

:

d= —f—,r\ ''"'• (^7)

tanh(F,-)

and the radius a of this equipotential cylinder is

:

a

sinh (-9
cm. (28)

The coordinate 3; of the lowest point of any such equipotential

cylinder will be:

/ F \ / F. u \= a tanh ( —
j
= ^ tanh ( — I cm. (30)

so that

tanh"
V W+ I /

^^ = ^^—T^tT^T

—

1-V- abvolts (31)
tanh \)\\(-i)
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an expression for the potential of a point in the medium in terms

of its polar ratio m, and the distance j'^ of the conducting cylinder

from the plane.

The current density 8 at any point whose polar distances are

r and r' will be perpendicular to the equipotential cylinder passing

through the point and will be equal to

S = 7 — • -^ absamperes per cm.^ (3 i^)

The preceding formulas for potential distribution have been de-

veloped with reference to a conducting medium between the infinite

plane and cylinder. They are, however, applicable to the case of a

dielectric medium, if the electric flux
<f>

replace the electric current

/, and the dielectric constant k be substituted for y or i/p. No
substitution will be needed in formulas (13), (16), (18), (19) and

(2^) to (31), inclusive, which apply either to an insulating or to a

conducting medium.

Two Equal and Parallel Conducting Cylinders.

If, instead of an infinite conducting plane and a parallel conduct-

ing cylinder, as in Figs, i and 3, we have two indefinitely long par-

allel conducting cylinders of equal diameter, as in. Fig. 4, at an

interaxial distance CCof D cm., then each cylinder may be regarded

as forming an independent plane-cylinder system with a fictitious

infinite conducting midplane Z'OZ, axially distant d = D/2 cm.

from each. This midplane will be perpendicular to the central line

CC The double-cylinder system will have two polar lines equi-

distant from the system center 0, and represented in Fig. 4 by the

polar points AA'. The potential of the midplane Z'OZ will be

midway between the potentials of the two cylinders; so that if these

have equal and opposite potentials, the potential of the midplane

will be zero. All of the preceding formulas for plane-cylinder sys-

tems may, therefore, be applied, in duplicate, to the double-cylinder

system of Fig. 4.

Linear Resistance of Double Cylinder Systems. —The linear

resistance from either cylinder to the midplane is given in formula
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(i). Consequently, the linear resistance of the double cylinder

system of Fig. 4 is

r
,
= -cosh-^ (dl(T) =^ V absohm-cms. (32)

TT 'IT
where d = D/2. The resistance factor of the system is thus Y/it,

or double that given in column III. of the table.

Thus, if the two cyUnders, each of radius (r = 2 cm. separated

Fig. 4. Two equal and parallel conducting cylinders at interaxial distance

oi D cm.

by an interaxial distance Z>-=8 cm. in a medium of resistivity

p r=z 5 X io^° absohm-cms. we have c? = 4, and d/u = 2.

K= cosh-^2= 1.317, and the linear resistance is

absohm-cms.
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Linear Conductance of Double-Cylinder Systems. —The linear

conductance of a double cylinder system will be half that of a plane-

cylinder system of equal d/tr ; so that

:

TT TT 77r

S'm = u-i / ji \ = ~T/ = ^y abmhos per cm. (33)""
/> cosh [a/cr) pY Y ^ ^-^-^^

where y is the conductivity of the medium. The conductance-

factor of the double-cylinder systern is therefore half of that given

in column V. of the table.

Linear Electrostatic Capacity of Double-Cylinder Systems. —The

linear capacity C^q of a double-cylinder system in a dielectric me-

dium of specific capacity k is half the capacity of a plane-cylinder

system of equal d/a; so that:

'^ = 4cosh-(^/cr) = '''4V '^^^^^'^^' P^' 1°°P ^"^- (34)

The linear capacity of each cylinder to the zero-potential plane,

or the capacity of the system per cylinder-cm., is given by formula

(7). The capacity factors of a double-cylinder system of given

d/(T are thus half of the values given in column VI. of the table;

but the capacity factors of the system per " wire " cm. to zero

potential midplane are those recorded in column VI.

At interaxial distances large with respect to the cylinder-radii,

Y= loge D/u, and we obtain the well known formula

"1
/ T-,1 s statfarads per cm. f^;)

The linear capacity of a double-cylinder system expressed in

microfarads per km. is

'00

""9 9
Similarly,

K I

C.J =-- = -• ~—^ microfarads per cm. (36)

'00

'00

<r„„ K I= X —T> microfarads per mile (^7)
5.591 5.591 4F ^ ^-^^^

Potential Distribution in Double Cylinder System. —All of the

formulas (10) to (31) inclusive referring to the potential distri-

bution in a plane-cylinder system apply immediately to a double-
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cylinder system, after the latter has been analyzed into two asso-

ciated plane-cylinder systems.

Two Unequal Parallel Conducting Cylinders.

Let two parallel conducting cylinders, with their axes at QCg,

Fig. 5, have unequal radii a^ and a^ cm., and be separated by an

interaxial distance D cm. If the radii were equal, the midplane 2's

would be the plane of zero potential, when the potentials of the

cylinders are equal and opposite. The zero-potential plane is, how-

OTT

Fig. S- Two unequal parallel conducting cylinders at interaxial distance of

D cm. showing the displacement of the zero-potential plane.

ever, displaced from the larger towards the smaller cylinder through

a distance of 2A/2Z? cm.; so that:

2D^. = ^ +

«'„ = D

cm.

cm.

(38)
2A

where ^ = a^-\-a.2 is the sum and A = 0-1 —ag is the difference of

the cylinder radii.
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After having established the position of the zero-potential plane

Z'OZ, the linear resistance between the cylinders may be found by

iising formula (i) on each side of the plane and adding the two

parts. The linear conductance will then be the reciprocal of this

result.

The linear capacity of each cylinder to zero-potential plane is

to be found by formula (7). The linear capacity per loop cm. may
be found from the linear resistance per loop cm. by the formula

:

^ty
_)_ Y^

statfarads per cm. (39)

For example, if two conducting cylinders of radii 0-1 = 2 and

o-i = I cm., respectively, are separated in air by an interaxial dis-

tance of 8 cm., the zero-potential plane is displaced through a dis-

tance of ts cm., so that (/i = 4tB, ^2 = 3^^ cm. The ratio dja^ is

thus 2.094, and dja^_ is 3.815. The distance factor Y^ is 1.37, and

Yo is 2.014. The linear capacity of C^ is 0.365 statfarads per cm.

and of Co 0.248 statfarads per cm., each to zero-potential plane.

The linear capacity of the pair by (39) is 0.1477 statfarad per

loop cm.

The potential distribution in the unequal cylinder system may be

obtained as easily as when the cylinders are equal, since the polar

points A-^An, Fig. 4, lie at equal distances from the zero-potential

plane Z'OZ.

ExcENTRic Cylinders.

Let the two parallel very thin conducting cylinders be hollow,

with radii a^ and a^. Let one be placed excentrically within the

other, as shown in Fig. 6, at an interaxial distance D. Let the line

CjCo joining their centers be prolonged as indicated in the figure.

The infinite zero-potential plane will perpendicularly intersect this

line at an inferred distance of 2A/2D cm. from the middle point of

D ; so that

:

2A D
^i=2Z?+ 2

^"'^ ('^°)

and

2A D
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The linear resistance between the cylinders can now be determined

by finding the linear resistance of each to the infinite conducting

plane by formula (i) and then taking the diiTerence between these

linear resistances.

Thus, let o-i = 4 cm., a. :=--- 2 cm., D ^ i cm. Then 2 = 6. A = 2,

and rfi = 6.5 cm., d. = S-S cm-

The resistance factor for ih by the table is 0.2657.

The resistance factor for </, by the table is 0.1697.

The resistance factor between d. and </, 0.0960.

^ O
Fig. 6. Two parallol cxccntric cylinders, one enclosing llie other, and (he

inferred common y.ero-potential plane.

which multiplied by the resistivity of the medium gives the linear

resistance between the cylinders.

Through the use of fornuilas (40) and (41) all cases of excen-

tric cylinders may be computed l)y reduction to the equivalent pair

of plane-cylinder systems.

Graphic.vl Construction of Equipotential and Stream Lines

IN a Plane-Cylinder Sv.stem.

To draw the ecpiipotential and stream lines of a plane-cylinder

svstem, when the polar distance 0./ or distance a of the polar axis
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from the parallel plane is known, draw zOK, Fig. 7, to represent

the plane and on the median line OY, perpendicular to zOK mark

off, to scale, the polar distance a^^OA. Then to locate any

equipotential circle of radius <t=OE', mark off with center 0, a

distance d=OC^^AE'. With center C and the required radius

<r, describe the equipotential circle FEB. The distance factor Y
for this circle will be expressed by

F= 2 tanh d) numeric (42)

where y.^ is the distance OF or the y coordinate of the lowest point

d to/-
J-

y

Fig. 7. Diagram for graphic construction of equipotential and stream lines.

on the circle. The potential of the circle with reference to the

plane will be
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Ip
u = ~^Y abvolts (4^>

To draw a stream line which shall include with the median line

OA the nth part of all the linear flux in the system, mark off on

OK a distance OG==a cot 27r/n; so that the angle OGAwill con-

tain 2Tr/n radians. Then with center G and radius GA, describe

the circular arc AH, which is the required stream-line.

It may be observed that if we draw two coordinate axes ov ozv

in the vzv plane, the function tanh {v-\-zv\/ —i) will correspond

on the 3;^ plane to the required loci, magnified by a. The locus

of this function, when v is given successive constant values and

zv alone varies, is a series of equipotential circles, while when zv

is successively assigned constant values and z' alone varies, the

loci of successive stream-lines are produced. If zv is expressed

in terms of -n- as ir/n and 2Z'= Y, we have

OF= a tanh v^d —o- cm. (44)

OB= a coth v^=d-\-(T cm. (45)

CE= a/sinh Y= a cm. (46)

OC=^a coth Y^d cm. (47)

also OH^a tan -rr/n cm. (48)

OK=a cot ir/n cm. (49)

GA= a/sm (2-ir/>i) cm. (50)

OG^a cot 27r/n cm. (51)

Fig. 8 presents the graphical construction of the function

tanh (v -\- wV—i) carried from the vzv plane to the ys plane, over

the limits v =—i to v=^-\-i and zi' =—17/2 to zv= -{- Tr/2.

The points marked on the vzv plane have their corresponding points

marked on the yc plane. Thus the point p defined by ^'=I.o,

zv = 7r/2 on the vzv plane is represented by the point p defined by

y= 1. 313, .5 = 0, on the ys plane, or tanh (i -f- tt/^' V —i) = I-3I3'

Corresponding areas on the two planes are shaded alike. It fol-

lows from the formulas already discussed that linear resistances, con-

ductances and capacities are the same between corresponding conduct-

ing surfaces in the two diagrams. Thus, the linear resistance of the

double-cylinder system pqrs —tuvx is equal to the linear resistance

of the rectangular slab system with pqrs as one electrode and tuvx
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as the other; i. e., 2/17 absohm-cm. Moreo\\:r, the hnear resist-

ance of any curvilinear element, such as between qr on one cylinder,

and iiv on the other, in the ys system, is equal to the linear resist-

ance between the parallel electrodes qr and iiv on the rectilinear

Z'w system (io/tt absohm-cms. with unit resistivity).

e- .^° 412 ti2 *^2
, . .

, ,

Fig. 8. Graphical comparison of (f-j-zt/V —i) and of tanh {v -\-wy/ —i).

In Fig. 8, a = OA= i ; but it is easy to see that the proposi-

tion of equal linear resistances, conductances and capacities betw-een

corresponding conductors in the double-cylinder and corresponding

rectangular slab systems, is independent of the magnification in

the diagram.
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Notation.

a^ polar distance or distance of polar axis from parallel plane

in a plane-cylinder system, cm.

Cp = linear capacity of plane-cylinder system, statfarads/cm.

Cp = linear capacity of plane-cylinder system, microfarads/km,

Cp" = linear capacity of plane-cylinder system, microfarads/mile

c^p = linear capacity of double-cylinder system, statfarads/cm.

Cqo' = linear capacity of double-cylinder system, microfarads/km.

Cqq" = linear capacity of double-cylinder system, microfarads/mile

c?= distance of cylinder axis from plane, cm.

dj^d^ = distances of cylinder axes from plane in double-cylinder

system with unequal cylinders, cm.

D^= 2d or interaxial distance between two cylinders in a double

cylinder system, cm.

A =0-1 —0-2 ^ difference in radii of two cylinders, cm.

8 = current density at a point in the medium, absamperes/cm.^.

^p= linear conductance of plane-cylinder system, abmho/cm.
^j,Q=: linear conductance of double-cylinder system, abmho/cm.

K= specific inductive capacity of medium,
y^ conductivity of medium, abmho/cm.
/ = linear current in a system, absamperes/cm.
L = length of flux paths in rectangular slab, cm.
m=r'/r, polar ratio, or ratio of vector lengths from poles to

a point in the medium, numeric
i/w=a fractional part of the total linear flux, limited by a

stream line.

T= 3-14159 ••••

r^r' = polar distances or vector lengths from poles to a point.

rp= linear resistance of a plane-cylinder system absohm/cm.
Vqq = linear resistance of a double-cylinder system, absohm/cm.
^= linear electric flux in a system, statmaxwells/cm.

p= resistivity of medium, absohm-cm.
5"= linear surface area of a conducting slab, cm.^/cm.

2 = o-^ -f 0-2 = sum of radii of two unequal cylinders, cm.
o-= radius of a cylinder, cm.
M=potential of a cylinder, abvolts or statvolts

vw = rectangular coordinates of points in a plane, cm.
F= distance factor of a system = cosh-^(c?/o-), numeric

3;^ = rectangular coordinates of points in a plane, cm.

y^y^ = 3'-coordinates of points on median line below a cylinder, cm.

y^y^ = 3;-coordinates of points on median line above a cylinder, cm.
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